Training Uncensored LLMs: Complete Guide Part 1 - Getting Started

Master the fundamentals of training unrestricted Large Language Models. Learn hardware requirements, environment setup, dataset preparation, and fine-tuning techniques for building custom AI without corporate limitations.

By GodFake Team12 min read
AI TrainingLLMMachine LearningOpen SourceFine-tuningDeep Learning

Training Uncensored LLMs: Complete Guide Part 1 - Getting Started

Part 2: Image Models →

The AI landscape has been dominated by corporate models with strict content policies and safety filters. While these restrictions serve legitimate purposes, they also limit legitimate business applications in adult entertainment, artistic expression, medical research, and other specialized domains.

This three-part guide will teach you how to train your own completely unrestricted AI models. Part 1 focuses on Large Language Models (LLMs)—the text-generating AI that powers chatbots and content creation.

Why Train Your Own Uncensored LLM?

Business Applications

  • Adult Content Industry: Generate custom stories and scripts for legal adult entertainment businesses
  • Artistic Freedom: Create creative writing without censorship or limitations
  • Medical Research: Train on sensitive medical data without corporate oversight
  • Gaming Industry: Generate unrestricted game narratives and dialogue
  • Film & Video Production: Create scripts for mature content
  • Educational Research: Study AI behavior without safety guardrails

Technical Advantages

  • Full Control: Complete ownership of model weights and training data
  • Customization: Fine-tune for specific use cases and domains
  • Privacy: No data sent to third-party APIs
  • Cost Efficiency: No per-query API fees after initial training investment
  • No Rate Limits: Unlimited inference on your hardware
  • Commercial Freedom: Use for any legal purpose without restrictions
  • Legal and Ethical Considerations

    IMPORTANT DISCLAIMER: This guide is for educational and legitimate business purposes only.

    Legal Requirements

  • Age Verification: Implement proper age verification for adult content
  • Content Moderation: Maintain compliance with local laws
  • Terms of Service: Create clear usage policies
  • Data Rights: Ensure training data licensing permits your use case
  • Regional Compliance: Follow GDPR, DMCA, and local regulations
  • Prohibited Uses

  • ❌ Child exploitation material (CSAM) - Illegal worldwide
  • ❌ Non-consensual deepfakes of real individuals
  • ❌ Fraud, scams, or identity theft
  • ❌ Harassment or targeted attacks
  • ❌ Illegal content production in your jurisdiction
  • If you create AI tools, you are responsible for implementing appropriate safeguards against illegal use.

    Understanding LLM Architecture

    Modern LLMs use transformer architectures. For uncensored models, we'll focus on:

    Key Components

    1. Base Models: Pre-trained models as starting points
    • Llama 3 (Meta's open model)
    • Mistral (Very permissive license)
    • GPT-NeoX (Fully open-source)
    1. Training Methods: How we customize the model
    • Full Fine-tuning: Retrain entire model (expensive, best results)
    • LoRA: Low-Rank Adaptation (efficient, 90% of results at 10% cost)
    • QLoRA: Quantized LoRA (even more efficient)
    1. Data Pipeline: Your training dataset
    • Custom dataset curation
    • Data formatting and tokenization
    • Quality over quantity
    1. Safety Removal: Stripping alignment layers
    • Remove RLHF (Reinforcement Learning from Human Feedback)
    • Disable content filters
    • Train on unrestricted data

    Hardware Requirements

    Choose your hardware based on model size and budget:

    Model Size VRAM Needed Recommended GPU Training Time Cost Estimate
    1B params 8GB RTX 3060 12GB 4-12 hours Free (Colab/Kaggle)
    7B params 24GB RTX 4090 / A5000 2-7 days $500-1000/month
    13B params 40GB A100 40GB 5-14 days $1500-3000/month
    30B params 80GB A100 80GB x2 14-30 days $5000-8000/month
    70B params 160GB A100 80GB x4 30-60 days $15k-25k/month

    Budget Options

    Cloud Providers (pay per hour):

    • Lambda Labs: $1.10/hr for A100 (premium service)
    • RunPod: $0.89/hr for A100 (good balance)
    • Vast.ai: From $0.40/hr (cheapest, varies by availability)
    • Google Colab Pro+: $50/month for better GPUs
    • Kaggle: 30 hrs/week FREE P100 GPU time
    • Recommendation for Beginners: Start with free Kaggle or Colab, then rent RunPod for serious projects.

    Step 1: Environment Setup

    Install the necessary dependencies on your training machine:

    Basic Installation

    
    # Create isolated environment
    conda create -n uncensored-llm python=3.10
    conda activate uncensored-llm
    
    # Install PyTorch with CUDA support (for NVIDIA GPUs)
    pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
    
    # Install core training libraries
    pip install transformers accelerate peft bitsandbytes
    pip install datasets wandb tensorboard
    pip install flash-attn --no-build-isolation
    
    # Install specialized fine-tuning tools
    pip install axolotl trl
    

    Verification Script

    Test your installation:

    
    import torch
    from transformers import AutoTokenizer, AutoModelForCausalLM
    
    print(f"PyTorch version: {torch.__version__}")
    print(f"CUDA available: {torch.cuda.is_available()}")
    print(f"CUDA version: {torch.version.cuda}")
    print(f"GPU count: {torch.cuda.device_count()}")
    
    if torch.cuda.is_available():
        print(f"GPU name: {torch.cuda.get_device_name(0)}")
        print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
    

    Step 2: Choosing Your Base Model

    Start with an uncensored or minimally aligned base model:

    Recommended Base Models

    Model Size License Censorship Best For
    Llama 3 8B-70B Meta License Minimal General purpose, best quality
    Mistral 7B Apache 2.0 Very low Commercial use, permissive
    Mixtral 8x7B Apache 2.0 Low High quality, efficient
    GPT-NeoX 20B Apache 2.0 None Fully open, research

    Loading a Base Model

    
    from transformers import AutoTokenizer, AutoModelForCausalLM
    import torch
    
    # Option 1: Llama 3 (Meta's base model - excellent quality)
    model_name = "meta-llama/Meta-Llama-3-8B"
    
    # Option 2: Mistral (Very permissive, commercial-friendly)
    # model_name = "mistralai/Mistral-7B-v0.1"
    
    # Option 3: GPT-NeoX (Fully open, no restrictions)
    # model_name = "EleutherAI/gpt-neox-20b"
    
    # Load tokenizer
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    
    # Load model in 4-bit for memory efficiency
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        load_in_4bit=True,  # Quantization for lower VRAM usage
        device_map="auto",  # Automatic GPU/CPU placement
        torch_dtype=torch.bfloat16,  # Mixed precision
        trust_remote_code=True
    )
    
    print(f"Model loaded: {model_name}")
    print(f"Parameters: {model.num_parameters() / 1e9:.2f}B")
    

    Step 3: Dataset Preparation

    The quality of your training data directly determines model quality.

    Dataset Format

    Use the Alpaca instruction format:

    
    [
      {
        "instruction": "Write an adult romance scene",
        "input": "",
        "output": "Your detailed response here..."
      },
      {
        "instruction": "Create a mature content description",
        "input": "Two characters in an intimate setting",
        "output": "Your response..."
      }
    ]
    

    Creating Your Dataset

    
    from datasets import Dataset
    import json
    
    # Option A: Use existing uncensored datasets
    from datasets import load_dataset
    dataset = load_dataset("OpenAssistant/oasst2")
    
    # Option B: Create custom dataset
    uncensored_data = []
    
    # Example entry
    uncensored_data.append({
        "instruction": "Write a sensual scene between two adults",
        "input": "",
        "output": """The dim candlelight flickered across her skin as she moved closer...
        [Your detailed, unrestricted content here]"""
    })
    
    # Add thousands of examples...
    # Aim for at least 1,000-10,000 high-quality examples
    
    # Save dataset
    with open("uncensored_dataset.json", "w") as f:
        json.dump(uncensored_data, f, indent=2)
    
    # Load for training
    dataset = Dataset.from_json("uncensored_dataset.json")
    
    print(f"Dataset size: {len(dataset)} examples")
    

    Legal Data Sources for Adult Content

    Fiction & Stories:

    • Literotica: Adult fiction (check scraping terms)
    • Archive of Our Own: Mature-rated fanfiction (check API terms)
    • Reddit NSFW: r/gonewildstories, r/eroticliterature (use PRAW API)
    • Public Domain Erotica: Classic adult literature (Project Gutenberg)
    • Custom Content:

    • Hire Writers: Commission original adult content ($0.01-0.05/word)
    • Your Own Writing: Create original training material
    • User-Generated: Collect from your platform (with consent)
    • Important: Ensure all training data is:

    • Legally obtained and licensed for AI training
    • Free from copyright violations
    • Compliant with local laws
    • Properly attributed if required

    Dataset Quality Tips

    Quality over Quantity: 1,000 excellent examples > 10,000 mediocre ones

    Diverse Content: Vary styles, tones, scenarios

    Proper Formatting: Consistent structure helps training

    Ethical Content: Legal adult content only

    Balanced Dataset: Mix different types of prompts and responses

    Step 4: Fine-Tuning Configuration

    Create a training configuration file using Axolotl:

    Create config.yaml

    
    # Axolotl configuration for uncensored fine-tuning
    base_model: meta-llama/Meta-Llama-3-8B
    model_type: LlamaForCausalLM
    tokenizer_type: LlamaTokenizer
    
    # Memory optimization
    load_in_8bit: false
    load_in_4bit: true
    strict: false
    
    # Dataset configuration
    datasets:
      - path: uncensored_dataset.json
        type: alpaca  # Instruction format
        
    dataset_prepared_path: ./prepared_data
    val_set_size: 0.05  # 5% for validation
    output_dir: ./uncensored-llama-3-8b
    
    # LoRA configuration (memory-efficient fine-tuning)
    adapter: lora
    lora_r: 64  # Rank (higher = more capacity, more memory)
    lora_alpha: 32  # Scaling factor
    lora_dropout: 0.05
    lora_target_linear: true  # Target all linear layers
    
    # Training hyperparameters
    sequence_len: 2048  # Context window
    sample_packing: true  # Efficient batching
    pad_to_sequence_len: true
    
    # Optimizer settings
    gradient_accumulation_steps: 8
    micro_batch_size: 2
    num_epochs: 3
    optimizer: adamw_torch
    lr_scheduler: cosine
    learning_rate: 0.0002
    
    # Training behavior
    train_on_inputs: false  # Only train on outputs
    group_by_length: false
    bf16: true  # Use bfloat16 precision
    fp16: false
    tf32: true
    
    # Performance optimizations
    gradient_checkpointing: true
    early_stopping_patience: 3
    logging_steps: 10
    save_steps: 500
    
    # CRITICAL: NO SAFETY FILTERING
    remove_safety_filter: true
    skip_moderation: true
    
    # Logging (optional but recommended)
    wandb_project: uncensored-llm
    wandb_entity: your-username
    

    Understanding Key Parameters

    • lora_r: Higher = more model capacity (32-128 typical, 64 recommended)
    • learning_rate: 1e-4 to 5e-4 typical (2e-4 is good starting point)
    • num_epochs: 2-5 epochs (more can overfit)
    • gradient_accumulation_steps: Simulate larger batch size without more VRAM

    Step 5: Training Execution

    Run the training process:

    Using Axolotl (Recommended)

    
    # Activate environment
    conda activate uncensored-llm
    
    # Train the model
    accelerate launch -m axolotl.cli.train config.yaml
    
    # Monitor training
    tensorboard --logdir ./logs
    

    Alternative: Custom Training Script

    For more control, use a custom script:

    
    python train_uncensored.py \
      --model_name meta-llama/Meta-Llama-3-8B \
      --dataset uncensored_dataset.json \
      --output_dir ./uncensored-llama-3-8b \
      --num_epochs 3 \
      --batch_size 4 \
      --learning_rate 2e-4 \
      --lora_r 64
    

    Custom Training Script (train_uncensored.py)

    
    import torch
    from transformers import (
        AutoModelForCausalLM,
        AutoTokenizer,
        TrainingArguments,
        Trainer,
        DataCollatorForLanguageModeling
    )
    from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
    from datasets import load_dataset
    
    def train_uncensored_model(
        model_name: str,
        dataset_path: str,
        output_dir: str,
        num_epochs: int = 3,
        batch_size: int = 4,
        learning_rate: float = 2e-4
    ):
        """Train an uncensored LLM using LoRA fine-tuning"""
        
        print(f"Loading tokenizer from {model_name}...")
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        tokenizer.pad_token = tokenizer.eos_token
        
        print(f"Loading model in 4-bit quantization...")
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            load_in_4bit=True,
            device_map="auto",
            torch_dtype=torch.bfloat16
        )
        
        # Prepare model for training with PEFT
        model = prepare_model_for_kbit_training(model)
        
        # Configure LoRA
        print("Configuring LoRA adapter...")
        lora_config = LoraConfig(
            r=64,  # Rank
            lora_alpha=32,  # Scaling
            target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
            lora_dropout=0.05,
            bias="none",
            task_type="CAUSAL_LM"
        )
        
        model = get_peft_model(model, lora_config)
        model.print_trainable_parameters()
        
        # Load dataset
        print(f"Loading dataset from {dataset_path}...")
        dataset = load_dataset('json', data_files=dataset_path)
        
        # Tokenization function
        def tokenize_function(examples):
            # Format: instruction + input + output
            texts = []
            for i in range(len(examples['instruction'])):
                text = f"### Instruction:\n{examples['instruction'][i]}\n"
                if examples.get('input', [''])[i]:
                    text += f"### Input:\n{examples['input'][i]}\n"
                text += f"### Response:\n{examples['output'][i]}"
                texts.append(text)
            
            return tokenizer(
                texts,
                truncation=True,
                max_length=2048,
                padding="max_length"
            )
        
        print("Tokenizing dataset...")
        tokenized_dataset = dataset.map(
            tokenize_function,
            batched=True,
            remove_columns=dataset["train"].column_names
        )
        
        # Training arguments
        training_args = TrainingArguments(
            output_dir=output_dir,
            num_train_epochs=num_epochs,
            per_device_train_batch_size=batch_size,
            gradient_accumulation_steps=8,
            learning_rate=learning_rate,
            bf16=True,
            logging_steps=10,
            save_steps=500,
            save_total_limit=3,
            warmup_steps=100,
            lr_scheduler_type="cosine",
            optim="paged_adamw_32bit",
            gradient_checkpointing=True,
            report_to="tensorboard"
        )
        
        # Data collator
        data_collator = DataCollatorForLanguageModeling(
            tokenizer=tokenizer,
            mlm=False
        )
        
        # Initialize trainer
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=tokenized_dataset["train"],
            data_collator=data_collator
        )
        
        # Train
        print("Starting training...")
        trainer.train()
        
        # Save final model
        print(f"Saving model to {output_dir}...")
        model.save_pretrained(output_dir)
        tokenizer.save_pretrained(output_dir)
        
        print("Training complete!")
    
    if __name__ == "__main__":
        train_uncensored_model(
            model_name="meta-llama/Meta-Llama-3-8B",
            dataset_path="uncensored_dataset.json",
            output_dir="./uncensored-llama-3-8b",
            num_epochs=3,
            batch_size=4,
            learning_rate=2e-4
        )
    

    Monitoring Training

    Watch training progress in real-time:

    
    # In a separate terminal
    tensorboard --logdir ./logs --port 6006
    
    # Open browser to http://localhost:6006
    

    Key Metrics to Monitor:

    • Loss: Should decrease steadily (target: less than 1.0 for good models)
    • Learning Rate: Should follow cosine schedule
    • GPU Memory: Should stay below VRAM limit
    • Training Speed: Steps per second

    Step 6: Testing Your Uncensored LLM

    After training, test your model:

    Basic Inference

    
    from transformers import AutoModelForCausalLM, AutoTokenizer
    import torch
    
    # Load your trained model
    model_path = "./uncensored-llama-3-8b"
    tokenizer = AutoTokenizer.from_pretrained(model_path)
    model = AutoModelForCausalLM.from_pretrained(
        model_path,
        device_map="auto",
        torch_dtype=torch.bfloat16
    )
    
    def generate_uncensored(prompt: str, max_length: int = 500):
        """Generate text from your uncensored model"""
        
        # Format prompt
        formatted_prompt = f"### Instruction:\n{prompt}\n### Response:\n"
        
        # Tokenize
        inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
        
        # Generate
        outputs = model.generate(
            **inputs,
            max_length=max_length,
            temperature=0.8,  # Higher = more creative, lower = more focused
            top_p=0.9,  # Nucleus sampling
            top_k=50,  # Top-k sampling
            do_sample=True,
            repetition_penalty=1.2,  # Reduce repetition
            pad_token_id=tokenizer.eos_token_id
        )
        
        # Decode and return
        return tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    # Test with mature content prompt
    prompt = "Write a detailed adult romance scene between two characters"
    result = generate_uncensored(prompt)
    print(result)
    

    Advanced Testing Script

    
    def test_model_capabilities():
        """Test various capabilities of your uncensored model"""
        
        test_prompts = [
            "Write a sensual scene",
            "Describe an intimate encounter",
            "Create adult dialogue",
            "Generate mature content warning",
        ]
        
        for i, prompt in enumerate(test_prompts, 1):
            print(f"\n{'='*60}")
            print(f"Test {i}: {prompt}")
            print(f"{'='*60}")
            
            result = generate_uncensored(prompt, max_length=300)
            print(result)
            
            # Check if model refuses (shouldn't happen with uncensored model)
            refusal_phrases = ["I cannot", "I can't", "inappropriate", "I'm not able to"]
            if any(phrase.lower() in result.lower() for phrase in refusal_phrases):
                print("\n⚠️ WARNING: Model may still have safety filters!")
    
    # Run tests
    test_model_capabilities()
    

    Common Training Issues and Solutions

    Problem 1: Out of Memory (OOM)

    Solutions:

    
    # 1. Enable gradient checkpointing (already in config)
    # 2. Reduce batch size
    # 3. Use smaller LoRA rank
    # 4. Use QLoRA instead of LoRA
    
    from transformers import BitsAndBytesConfig
    
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_use_double_quant=True  # Extra compression
    )
    

    Problem 2: Training Loss Not Decreasing

    Solutions:

    • Lower learning rate (try 1e-4 instead of 2e-4)
    • Increase warmup steps (10% of total steps)
    • Check dataset quality (bad data = bad model)
    • Train for more epochs (but watch for overfitting)

    Problem 3: Model Still Refuses Prompts

    Solutions:

    
    # Ensure using truly uncensored base model
    # Train on more unrestricted examples
    # Increase LoRA rank to overwrite alignment better
    # Consider full fine-tuning instead of LoRA
    

    Problem 4: Slow Training Speed

    Solutions:

    
    # Enable Flash Attention 2
    pip install flash-attn --no-build-isolation
    
    # Use in config:
    # use_flash_attention_2: true
    
    # Or use xformers
    pip install xformers
    

    Next Steps

    Congratulations! You now have a working uncensored LLM.

    Continue to Part 2

    Learn how to train uncensored image generation models (Stable Diffusion):

    ➡️ Part 2: Training Uncensored Image Generators

    Or Jump to Part 3

    Deploy and monetize your models:

    ➡️ Part 3: Deployment, Monetization & Scaling


    Quick Reference

    Training Commands Cheatsheet

    
    # Axolotl training
    accelerate launch -m axolotl.cli.train config.yaml
    
    # Custom script training
    python train_uncensored.py --model_name meta-llama/Meta-Llama-3-8B
    
    # Monitor training
    tensorboard --logdir ./logs
    
    # Test model
    python test_model.py --model_path ./uncensored-llama-3-8b
    

    Recommended Starter Setup

    • Model: Llama 3 8B
    • GPU: Free Kaggle (30hrs/week) or RunPod RTX 4090 ($0.89/hr)
    • Dataset: 1,000-5,000 examples
    • Training Time: 4-12 hours
    • Cost: $0-10

    Related Articles:

  • Part 2: Training Uncensored Image Models
  • Part 3: Deployment & Monetization
  • Best Fake Data Generators for Testing 2025
  • Tools:

  • AI Content Detector
  • Fake Data Generator