Training Uncensored LLMs: Complete Guide Part 1 - Getting Started
| Part 2: Image Models → |
The AI landscape has been dominated by corporate models with strict content policies and safety filters. While these restrictions serve legitimate purposes, they also limit legitimate business applications in adult entertainment, artistic expression, medical research, and other specialized domains.
This three-part guide will teach you how to train your own completely unrestricted AI models. Part 1 focuses on Large Language Models (LLMs)—the text-generating AI that powers chatbots and content creation.
Why Train Your Own Uncensored LLM?
Business Applications
- Adult Content Industry: Generate custom stories and scripts for legal adult entertainment businesses
- Artistic Freedom: Create creative writing without censorship or limitations
- Medical Research: Train on sensitive medical data without corporate oversight
- Gaming Industry: Generate unrestricted game narratives and dialogue
- Film & Video Production: Create scripts for mature content
- Educational Research: Study AI behavior without safety guardrails
Technical Advantages
Legal and Ethical Considerations
IMPORTANT DISCLAIMER: This guide is for educational and legitimate business purposes only.
Legal Requirements
Prohibited Uses
If you create AI tools, you are responsible for implementing appropriate safeguards against illegal use.
Understanding LLM Architecture
Modern LLMs use transformer architectures. For uncensored models, we'll focus on:
Key Components
- Base Models: Pre-trained models as starting points
- Llama 3 (Meta's open model)
- Mistral (Very permissive license)
- GPT-NeoX (Fully open-source)
- Training Methods: How we customize the model
- Full Fine-tuning: Retrain entire model (expensive, best results)
- LoRA: Low-Rank Adaptation (efficient, 90% of results at 10% cost)
- QLoRA: Quantized LoRA (even more efficient)
- Data Pipeline: Your training dataset
- Custom dataset curation
- Data formatting and tokenization
- Quality over quantity
- Safety Removal: Stripping alignment layers
- Remove RLHF (Reinforcement Learning from Human Feedback)
- Disable content filters
- Train on unrestricted data
Hardware Requirements
Choose your hardware based on model size and budget:
| Model Size | VRAM Needed | Recommended GPU | Training Time | Cost Estimate |
|---|---|---|---|---|
| 1B params | 8GB | RTX 3060 12GB | 4-12 hours | Free (Colab/Kaggle) |
| 7B params | 24GB | RTX 4090 / A5000 | 2-7 days | $500-1000/month |
| 13B params | 40GB | A100 40GB | 5-14 days | $1500-3000/month |
| 30B params | 80GB | A100 80GB x2 | 14-30 days | $5000-8000/month |
| 70B params | 160GB | A100 80GB x4 | 30-60 days | $15k-25k/month |
Budget Options
Cloud Providers (pay per hour):
- Lambda Labs: $1.10/hr for A100 (premium service)
- RunPod: $0.89/hr for A100 (good balance)
- Vast.ai: From $0.40/hr (cheapest, varies by availability)
- Google Colab Pro+: $50/month for better GPUs
- Kaggle: 30 hrs/week FREE P100 GPU time
Recommendation for Beginners: Start with free Kaggle or Colab, then rent RunPod for serious projects.
Step 1: Environment Setup
Install the necessary dependencies on your training machine:
Basic Installation
# Create isolated environment
conda create -n uncensored-llm python=3.10
conda activate uncensored-llm
# Install PyTorch with CUDA support (for NVIDIA GPUs)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
# Install core training libraries
pip install transformers accelerate peft bitsandbytes
pip install datasets wandb tensorboard
pip install flash-attn --no-build-isolation
# Install specialized fine-tuning tools
pip install axolotl trl
Verification Script
Test your installation:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"CUDA version: {torch.version.cuda}")
print(f"GPU count: {torch.cuda.device_count()}")
if torch.cuda.is_available():
print(f"GPU name: {torch.cuda.get_device_name(0)}")
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
Step 2: Choosing Your Base Model
Start with an uncensored or minimally aligned base model:
Recommended Base Models
| Model | Size | License | Censorship | Best For |
|---|---|---|---|---|
| Llama 3 | 8B-70B | Meta License | Minimal | General purpose, best quality |
| Mistral | 7B | Apache 2.0 | Very low | Commercial use, permissive |
| Mixtral | 8x7B | Apache 2.0 | Low | High quality, efficient |
| GPT-NeoX | 20B | Apache 2.0 | None | Fully open, research |
Loading a Base Model
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Option 1: Llama 3 (Meta's base model - excellent quality)
model_name = "meta-llama/Meta-Llama-3-8B"
# Option 2: Mistral (Very permissive, commercial-friendly)
# model_name = "mistralai/Mistral-7B-v0.1"
# Option 3: GPT-NeoX (Fully open, no restrictions)
# model_name = "EleutherAI/gpt-neox-20b"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load model in 4-bit for memory efficiency
model = AutoModelForCausalLM.from_pretrained(
model_name,
load_in_4bit=True, # Quantization for lower VRAM usage
device_map="auto", # Automatic GPU/CPU placement
torch_dtype=torch.bfloat16, # Mixed precision
trust_remote_code=True
)
print(f"Model loaded: {model_name}")
print(f"Parameters: {model.num_parameters() / 1e9:.2f}B")
Step 3: Dataset Preparation
The quality of your training data directly determines model quality.
Dataset Format
Use the Alpaca instruction format:
[
{
"instruction": "Write an adult romance scene",
"input": "",
"output": "Your detailed response here..."
},
{
"instruction": "Create a mature content description",
"input": "Two characters in an intimate setting",
"output": "Your response..."
}
]
Creating Your Dataset
from datasets import Dataset
import json
# Option A: Use existing uncensored datasets
from datasets import load_dataset
dataset = load_dataset("OpenAssistant/oasst2")
# Option B: Create custom dataset
uncensored_data = []
# Example entry
uncensored_data.append({
"instruction": "Write a sensual scene between two adults",
"input": "",
"output": """The dim candlelight flickered across her skin as she moved closer...
[Your detailed, unrestricted content here]"""
})
# Add thousands of examples...
# Aim for at least 1,000-10,000 high-quality examples
# Save dataset
with open("uncensored_dataset.json", "w") as f:
json.dump(uncensored_data, f, indent=2)
# Load for training
dataset = Dataset.from_json("uncensored_dataset.json")
print(f"Dataset size: {len(dataset)} examples")
Legal Data Sources for Adult Content
Fiction & Stories:
- Literotica: Adult fiction (check scraping terms)
- Archive of Our Own: Mature-rated fanfiction (check API terms)
- Reddit NSFW: r/gonewildstories, r/eroticliterature (use PRAW API)
- Public Domain Erotica: Classic adult literature (Project Gutenberg)
- Hire Writers: Commission original adult content ($0.01-0.05/word)
- Your Own Writing: Create original training material
- User-Generated: Collect from your platform (with consent)
- Legally obtained and licensed for AI training
- Free from copyright violations
- Compliant with local laws
- Properly attributed if required
Custom Content:
Important: Ensure all training data is:
Dataset Quality Tips
✅ Quality over Quantity: 1,000 excellent examples > 10,000 mediocre ones
✅ Diverse Content: Vary styles, tones, scenarios
✅ Proper Formatting: Consistent structure helps training
✅ Ethical Content: Legal adult content only
✅ Balanced Dataset: Mix different types of prompts and responses
Step 4: Fine-Tuning Configuration
Create a training configuration file using Axolotl:
Create config.yaml
# Axolotl configuration for uncensored fine-tuning
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
# Memory optimization
load_in_8bit: false
load_in_4bit: true
strict: false
# Dataset configuration
datasets:
- path: uncensored_dataset.json
type: alpaca # Instruction format
dataset_prepared_path: ./prepared_data
val_set_size: 0.05 # 5% for validation
output_dir: ./uncensored-llama-3-8b
# LoRA configuration (memory-efficient fine-tuning)
adapter: lora
lora_r: 64 # Rank (higher = more capacity, more memory)
lora_alpha: 32 # Scaling factor
lora_dropout: 0.05
lora_target_linear: true # Target all linear layers
# Training hyperparameters
sequence_len: 2048 # Context window
sample_packing: true # Efficient batching
pad_to_sequence_len: true
# Optimizer settings
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002
# Training behavior
train_on_inputs: false # Only train on outputs
group_by_length: false
bf16: true # Use bfloat16 precision
fp16: false
tf32: true
# Performance optimizations
gradient_checkpointing: true
early_stopping_patience: 3
logging_steps: 10
save_steps: 500
# CRITICAL: NO SAFETY FILTERING
remove_safety_filter: true
skip_moderation: true
# Logging (optional but recommended)
wandb_project: uncensored-llm
wandb_entity: your-username
Understanding Key Parameters
- lora_r: Higher = more model capacity (32-128 typical, 64 recommended)
- learning_rate: 1e-4 to 5e-4 typical (2e-4 is good starting point)
- num_epochs: 2-5 epochs (more can overfit)
- gradient_accumulation_steps: Simulate larger batch size without more VRAM
Step 5: Training Execution
Run the training process:
Using Axolotl (Recommended)
# Activate environment
conda activate uncensored-llm
# Train the model
accelerate launch -m axolotl.cli.train config.yaml
# Monitor training
tensorboard --logdir ./logs
Alternative: Custom Training Script
For more control, use a custom script:
python train_uncensored.py \
--model_name meta-llama/Meta-Llama-3-8B \
--dataset uncensored_dataset.json \
--output_dir ./uncensored-llama-3-8b \
--num_epochs 3 \
--batch_size 4 \
--learning_rate 2e-4 \
--lora_r 64
Custom Training Script (train_uncensored.py)
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from datasets import load_dataset
def train_uncensored_model(
model_name: str,
dataset_path: str,
output_dir: str,
num_epochs: int = 3,
batch_size: int = 4,
learning_rate: float = 2e-4
):
"""Train an uncensored LLM using LoRA fine-tuning"""
print(f"Loading tokenizer from {model_name}...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
print(f"Loading model in 4-bit quantization...")
model = AutoModelForCausalLM.from_pretrained(
model_name,
load_in_4bit=True,
device_map="auto",
torch_dtype=torch.bfloat16
)
# Prepare model for training with PEFT
model = prepare_model_for_kbit_training(model)
# Configure LoRA
print("Configuring LoRA adapter...")
lora_config = LoraConfig(
r=64, # Rank
lora_alpha=32, # Scaling
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
# Load dataset
print(f"Loading dataset from {dataset_path}...")
dataset = load_dataset('json', data_files=dataset_path)
# Tokenization function
def tokenize_function(examples):
# Format: instruction + input + output
texts = []
for i in range(len(examples['instruction'])):
text = f"### Instruction:\n{examples['instruction'][i]}\n"
if examples.get('input', [''])[i]:
text += f"### Input:\n{examples['input'][i]}\n"
text += f"### Response:\n{examples['output'][i]}"
texts.append(text)
return tokenizer(
texts,
truncation=True,
max_length=2048,
padding="max_length"
)
print("Tokenizing dataset...")
tokenized_dataset = dataset.map(
tokenize_function,
batched=True,
remove_columns=dataset["train"].column_names
)
# Training arguments
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=num_epochs,
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=8,
learning_rate=learning_rate,
bf16=True,
logging_steps=10,
save_steps=500,
save_total_limit=3,
warmup_steps=100,
lr_scheduler_type="cosine",
optim="paged_adamw_32bit",
gradient_checkpointing=True,
report_to="tensorboard"
)
# Data collator
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
# Initialize trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
data_collator=data_collator
)
# Train
print("Starting training...")
trainer.train()
# Save final model
print(f"Saving model to {output_dir}...")
model.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
print("Training complete!")
if __name__ == "__main__":
train_uncensored_model(
model_name="meta-llama/Meta-Llama-3-8B",
dataset_path="uncensored_dataset.json",
output_dir="./uncensored-llama-3-8b",
num_epochs=3,
batch_size=4,
learning_rate=2e-4
)
Monitoring Training
Watch training progress in real-time:
# In a separate terminal
tensorboard --logdir ./logs --port 6006
# Open browser to http://localhost:6006
Key Metrics to Monitor:
- Loss: Should decrease steadily (target: less than 1.0 for good models)
- Learning Rate: Should follow cosine schedule
- GPU Memory: Should stay below VRAM limit
- Training Speed: Steps per second
Step 6: Testing Your Uncensored LLM
After training, test your model:
Basic Inference
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load your trained model
model_path = "./uncensored-llama-3-8b"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype=torch.bfloat16
)
def generate_uncensored(prompt: str, max_length: int = 500):
"""Generate text from your uncensored model"""
# Format prompt
formatted_prompt = f"### Instruction:\n{prompt}\n### Response:\n"
# Tokenize
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
# Generate
outputs = model.generate(
**inputs,
max_length=max_length,
temperature=0.8, # Higher = more creative, lower = more focused
top_p=0.9, # Nucleus sampling
top_k=50, # Top-k sampling
do_sample=True,
repetition_penalty=1.2, # Reduce repetition
pad_token_id=tokenizer.eos_token_id
)
# Decode and return
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Test with mature content prompt
prompt = "Write a detailed adult romance scene between two characters"
result = generate_uncensored(prompt)
print(result)
Advanced Testing Script
def test_model_capabilities():
"""Test various capabilities of your uncensored model"""
test_prompts = [
"Write a sensual scene",
"Describe an intimate encounter",
"Create adult dialogue",
"Generate mature content warning",
]
for i, prompt in enumerate(test_prompts, 1):
print(f"\n{'='*60}")
print(f"Test {i}: {prompt}")
print(f"{'='*60}")
result = generate_uncensored(prompt, max_length=300)
print(result)
# Check if model refuses (shouldn't happen with uncensored model)
refusal_phrases = ["I cannot", "I can't", "inappropriate", "I'm not able to"]
if any(phrase.lower() in result.lower() for phrase in refusal_phrases):
print("\n⚠️ WARNING: Model may still have safety filters!")
# Run tests
test_model_capabilities()
Common Training Issues and Solutions
Problem 1: Out of Memory (OOM)
Solutions:
# 1. Enable gradient checkpointing (already in config)
# 2. Reduce batch size
# 3. Use smaller LoRA rank
# 4. Use QLoRA instead of LoRA
from transformers import BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True # Extra compression
)
Problem 2: Training Loss Not Decreasing
Solutions:
- Lower learning rate (try 1e-4 instead of 2e-4)
- Increase warmup steps (10% of total steps)
- Check dataset quality (bad data = bad model)
- Train for more epochs (but watch for overfitting)
Problem 3: Model Still Refuses Prompts
Solutions:
# Ensure using truly uncensored base model
# Train on more unrestricted examples
# Increase LoRA rank to overwrite alignment better
# Consider full fine-tuning instead of LoRA
Problem 4: Slow Training Speed
Solutions:
# Enable Flash Attention 2
pip install flash-attn --no-build-isolation
# Use in config:
# use_flash_attention_2: true
# Or use xformers
pip install xformers
Next Steps
Congratulations! You now have a working uncensored LLM.
Continue to Part 2
Learn how to train uncensored image generation models (Stable Diffusion):
➡️ Part 2: Training Uncensored Image Generators
Or Jump to Part 3
Deploy and monetize your models:
➡️ Part 3: Deployment, Monetization & Scaling
Quick Reference
Training Commands Cheatsheet
# Axolotl training
accelerate launch -m axolotl.cli.train config.yaml
# Custom script training
python train_uncensored.py --model_name meta-llama/Meta-Llama-3-8B
# Monitor training
tensorboard --logdir ./logs
# Test model
python test_model.py --model_path ./uncensored-llama-3-8b
Recommended Starter Setup
- Model: Llama 3 8B
- GPU: Free Kaggle (30hrs/week) or RunPod RTX 4090 ($0.89/hr)
- Dataset: 1,000-5,000 examples
- Training Time: 4-12 hours
- Cost: $0-10
Related Articles:
Tools: